
VALIDATING HIDDEN CODE 
DEPENDENCIES THROUGH 
RUNTIME TRACES

PRESENTED BY MOHAMED AMINE HADDAJI

SUPERVISED BY HAFEDH MILI

Lightning Talks
June 6, 2019



2

• We are aiming to migrate legacy applications to Service Oriented
Architectures.
• Identify the reusable clusters of features / functionalities that are implemented
in the legacy system.
• A complete dependency graph of an application could be used as input to
identify potential reusable services.

• Legacy J2EE applications are :
• Multi-tiered
• Multi-languages

What are we doing ?



3

Hidden dependencies ?

• In order for the client code to use services in the web tier, callback methods
and specific interfaces must be implemented.
• Those are implicit and cannot be seen in the user code.

• Sniff the source code for those calls and artificially add container call
dependencies using a rules-based engine.



4

What are we trying to achieve ?

• Our goal is to validate the added hidden 
dependencies (implicit calls) by relying on 
execution traces of those legacy applications.

• Dynamic code analysis (run-time tracing)
• Both client and server must be traced.



170

517

2582

4739

Packages

Classes

Methods

Parameters

0 1000 2000 3000 4000 5000

Petstore 1.1.2 

Components

IN DEPTH

5

• Static code analysis 
• KDM™ : a metamodel for knowledge 

discovery in software.

• Some legacy J2EE applications :
• Springstore
• Vaza
• Petstore 1.1.2

• Dynamic code analysis (MaintainJ)
• Generates runtime sequence diagrams.
• Traces applications running on a single 

or multiple JVM's.



6

Comparing the call graphs 



7

• Are we going to invoke all the methods ?

• Are we going to find all the call traces in the statically generated call graph ?

• Dynamically, are we going to be able to really detect the calls from the client
side straight to the server side ?
*Without having the client side pointing to interfaces or proxies

What is left to be done ? What we might encounter ?


