VALIDATING HIDDEN CODE
DEPENDENCIES THROUGH
RUNTIME TRACES

PRESENTED BY MOHAMED AMINE HADDAII

SUPERVISED BY HAFEDH MILI

Lightning Talks

June 6, 2019

UQAM




What are we doing ?

* We are aiming to migrate legacy applications to Service Oriented
Architectures.

* |dentify the reusable clusters of features / functionalities that are implemented
in the legacy system.

A complete dependency graph of an application could be used as input to
identify potential reusable services.

* Legacy J2EE applications are :
* Multi-tiered
* Multi-languages



Hidden dependencies ?

* |n order for the client code to use services in the web tier, callback methods
and specific interfaces must be implemented.

* Those are implicit and cannot be seen in the user code.

* Sniff the source code for those calls and artificially add container call
dependencies using a rules-based engine.



What are we trying to achieve ?

* Our goal is to validate the added hidden
dependencies (implicit calls) by relying on
execution traces of those legacy applications.

* Dynamic code analysis (run-time tracing)
* Both client and server must be traced.

e Data-driven control dependencies
—p Codification of container services



IN DEPTH

* Static code analysis

 KDM™ : a metamodel for knowledge
discovery in software.

* Some legacy J2EE applications :
* Springstore

* Dynamic code analysis (MaintainJ)
 Generates runtime sequence diagrams.

* Traces applications running on a single
or multiple JVM's.

* Vaza

* Petstore 1.1.2

IPopuIateServIe‘d

[MainServiet [Debug] [URLM

appingl IRequestProcessor{

[LanguageHandIed |JSP

Util]

== 5%void processRequest(HttpSertletRequest arg0) (6ms)

== 57:void notifyListenerg

(Collection arg0) (2r

Q,

58:void doEnd(HttpServle

Request arg0) (Oms)

%% 60:ScreenFlov

]

Manager getScreenFlowManager() (02 ca

== §1:void getNgxtScreen(HttpServletRequest arg0) (1ms)

Is = Oms)

Hesssununninnns

B E———

67:Locale getlLoc

== 63:void getNgxtScreen(HttpServl

etRequest arg0) (1ms)

== B6:void doPrdcess(HttpServletRequest arg0) (8ms)

ale(HttpSession arg0d) (Oms)

== 68:String getTemplate(Locale arg0) (Oms)

== 7:Strina aetTemnlatell ncale ar

M MNm<)




Comparing the call graphs

MaintServlet::init MaintServlet::doGet RequestDispatcher::forward MaintServlet::getScreenFlowManager

MaintServlet::getRequestProcessor

t::doProcess

ScreenFlowManager::init

RequestProcessor::processRequest

Requestprocessor::init RequestProcesso\RequestProcessor

Fully Qualified Names :

com.sun.j2ee.blueprints.control.web.MaintServlet = MainServiet
com.sun.j2ee.blueprints.control.web.RequestProcessor = RequestProcessor
com.sun.j2ee.blueprints.control.web.ScreenFlowManager = ScreenFlowManager
javax.servlet.RequestProcessor = RequestProcessor



What is left to be done ? What we might encounter ?

* Are we going to invoke all the methods ?

* Are we going to find all the call traces in the statically generated call graph ?

* Dynamically, are we going to be able to really detect the calls from the client
side straight to the server side ?

*Without having the client side pointing to interfaces or proxies



