
Identifying pass conflicts in LLVM

Sébastien Michelland (ENS Lyon)

Sébastien Mosser (UQÀM)

Laure Gonnord, Matthieu Moy (Université Lyon 1)

Second meeting of the SE@MTL community

June 6, 2019



There is hidden complexity in compilation pass order

% clang -O3 -emit-llvm program.c -o program.bc

I 260 passes using with 61 optimizations and 24 analyses

. . . -domtree -loops -loop-simplify . . .

I Order of optimizations counts!

I Only constrained by dependencies specified by humans.

Can we optimize further by reordering passes?

2



The LLVM test suite provides experimental proof

I Modified to run arbitrary tests on a wide set of programs

% opt -loop-simplify -loop-simplify program.bc

I Want a mathematical model, but...

(P • x) • y should be P • (x ; y)

opt -x P | opt -y is not really opt -x -y P

I Engineering challenge.

3



Not all orderings are interesting

I Find passes that don’t commute... and
are semantically related.

I Typing: which areas of the program
are affected

I Common dependencies and preserved
analyzes

I Need to visualize the types and
relations.

ModulePass

FunctionPass

LoopPass BBPass

4



An example of pass relations

I Automated extraction from
LLVM source code (227 passes,
501 relations)

I Neo4j database

I Almost all optimizations are
independent from each other

5



Underlying research questions

I Methodology to locate interesting pairs?
I Pairwise testing

I Which notion of equivalent orders?
I ... which notion of equivalent programs?

I Program semantics are preserved by LLVM
I Code equality, structural equality, speed

I Is the dependency information reliable?

6


